DOI: 10.1002/adsc.200800523

Highly Enantioselective Friedel–Crafts Reaction of 4,7-Dihydroindoles with β , γ -Unsaturated α -Keto Esters by Chiral Brønsted Acids

Mi Zeng,^a Qiang Kang,^a Qing-Li He,^a and Shu-Li You^{a,*}

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China Fax: (+86)-21-5492-5087; e-mail: slyou@mail.sioc.ac.cn

Received: August 21, 2008; Published online: October 2, 2008

Dedicated to Prof. Xiyan Lu on the occasion of his 80th birthday.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.200800523.

Abstract: A highly efficient Friedel–Crafts reaction of 4,7-dihydroindoles with β , γ -unsaturated α -keto esters by a chiral *N*-triflyl phosphoramide was realized, affording the 2-substituted 4,7-dihydroindoles with up to 98% *ee* for a wide range of substrates. The Friedel–Crafts alkylation together with a subsequent oxidation of the product with *p*-benzoquinone led to a 2-alkylated indole derivative in 98% *ee*.

Keywords: asymmetric catalysis; chiral Brønsted acids; conjugate addition; enantioselectivity; Friedel–Crafts reaction; indoles

Indoles are probably the most widely distributed heterocyclic compounds in nature and exist extensively as the structure core of biologically active natural products and pharmaceutical compounds.^[1] Therefore the synthesis of optically pure indole derivatives is one of the most intense research areas in organic synthesis.^[2] In this regard, the enantioselective Friedel-Crafts reaction of indole represents one of the most important reactions for the direct access to optically pure indoles.^[3] Although the enantioselective Friedel– Crafts reaction has attracted considerable interest and witnessed significant progress recently, [4] the highly enantioselective synthesis of 2-substituted indole derivatives is still a challenge since enantioselective Friedel-Crafts reactions of indole always lead to 3substituted indole derivatives.^[5]

Just recently, following the protocol of Saraçoğlu, ^[6] Evans and co-workers have realized the Lewis acid-catalyzed asymmetric Friedel–Crafts reaction of α , β -

unsaturated 2-acylimidazoles with 4,7-dihydroindoles.^[7] This elegant protocol provides an easy access to 2-substituted indole derivatives after a simple oxidation of the products generated therefrom. Similarly, Pedro and co-workers reported a catalytic Friedel-Crafts alkylation at the 2-position of indole with simple enones, giving moderate ees in the presence of a zirconium(IV)-BINOL complex.[8] Interesting as the optically pure 2-substituted indole derivatives are, their catalytic asymmetric synthesis is still rather limited. For instance, the alkylation of β , γ -unsaturated α keto esters at the 2-position of indole has not been reported yet although both the ketone and ester groups in the products would offer facile conversions to versatile functionalities.^[9] Taking advantage of Brønsted acid catalysis,[10-11] we recently realized the chiral phosphoric acid-catalyzed Friedel-Crafts reaction of 4,7-dihydroindoles with imines, affording the 2-indolylmethanamine derivatives after a subsequent oxidation. [11a] Moreover, Yamamoto and co-workers have recently introduced the chiral N-triflyl phosphoramide as a stronger acid compared with the chiral phosphoric acid, and the former enables the activation of carbonyl groups and highly extends the reaction type catalyzed by chiral Brønsted acids. [12] We envisaged that the chiral N-triflyl phosphoramide might be able to activate the β , γ -unsaturated α -keto ester to realize the Friedel-Crafts alkylation of indole at the 2-position (Figure 1). It should be noted that, very recently, Rueping and co-workers reported the chiral Ntriflyl phosphoramide-catalyzed enantioselective Friedel-Crafts alkylation of indole with β,γ -unsaturated α-keto esters with up to 92% ee. [12c] In this paper, we report a highly enantioselective Friedel-Crafts reaction of 4,7-dihydroindoles with β , γ -unsaturated α -keto esters catalyzed by the chiral N-triflyl phosphoramide,

Figure 1. Route to 2-substituted indoles *via* Friedel–Crafts alkylation of 4,7-dihydroindoles.

giving the 2-substituted indole derivatives with up to 98% ee.

We first examined the reaction between 4,7-dihydroindole **2a** and β , γ -unsaturated α -keto ester **3a** catalyzed by different chiral *N*-triflyl phosphoramides (see the Supporting Information for details). In the presence of 5 mol% of the chiral *N*-triflyl phosphoramides in toluene at $-78\,^{\circ}$ C, reactions of **3a** with 2 equivalents of **2a** all gave the desired product **4aa** smoothly together with 1,2-addition byproduct, and the best *ee* (89% *ee*) was obtained using catalyst **1** bearing the bulky 2,4,6-(*i*-Pr)₃C₆H₂ groups (entry 5, Table 1).

With 5 mol% of (S)-1 as the catalyst, reaction temperatures and solvents have been examined, and the results are summarized in Table 1. Interestingly, the reaction at -60 °C gave a higher ee (92%) with a rea-

sonable yield (84%) (entry 4, Table 1). Several common solvents such as dichloromethane (CH₂Cl₂), THF, diethyl ether (Et₂O), and EtOAc have been tested. All the solvents led to excellent enantiomeric excess values, and reaction in diethyl ether (Et₂O) gave the optimal result, 96% yield and 98% *ee* (entry 8, Table 1).

As listed in Table 2, the catalyst loading and the equivalents of 4,7-dihydroindole have been examined.

Table 2. Optimization of the reaction conditions.[a]

$$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

Entry	y (equiv)	x (mol%)	Time (h)	Yield [%] ^[b]	ee [%] ^[c]
1	2.0	5	1.0	96	98
2	1.5	5	1.0	84	98
3	1.1	5	2.0	74	94
4	2.0	2	1.0	89	97
5	2.0	1	2.0	85	94

- [a] Reaction conditions: y equiv of 2a, x mol% 1, -60°C, 0.20 mol/L of 3a in ether.
- [b] Isolated yields.
- [c] Determined by chiral HPLC analysis (Chiralcel OD-H column).

Table 1. Optimization of the reaction conditions for enantioselective Friedel-Crafts reactions.^[a]

Entry	Temperature [°C]	Solvent	Time [h]	Yield [%] ^[b]	ee [%] ^[c]
1	25	toluene	0.25	52	64
2	0	toluene	1.0	80	84
3	-40	toluene	1.0	77	90
4	-60	toluene	1.5	84	92
5	-78	toluene	2.5	87	89
6	-60	dichloromethane (CH ₂ Cl ₂)	1.0	70	87
7	-60	tetrahydrofuran (THF)	8.0	48	86
8	-60	diethyl ether (Et ₂ O)	1.0	96	98
9	-60	EtOAc	1.0	80	90

[[]a] Reaction conditions: 2.0 equiv. of 2a, 5 mol% of 1, 0.20 mol/L of 3a.

[[]b] Isolated yields.

[[]c] Determined by chiral HPLC analysis (Chiralcel OD-H column).

With 1.5 or 1.1 equivalents of dihydroindole **2a**, the reaction proceeded smoothly to give the alkylation product in 98% and 94% *ee*, respectively. Gratifyingly, even with 1 mol% of the catalyst, alkylation product **4aa** was also obtained in 85% yield with 94% *ee* (entry 5, Table 2).

Under the above optimized reaction conditions (2.0 equivalents of 4,7-dihydroindole, 5 mol% of 1, -60°C, and Et₂O as the solvent), Friedel–Crafts reactions between a wide range of β , γ -unsaturated α -keto esters 3 and substituted 4,7-dihydroindoles have been carried out to test the generality of the reaction. The results are summarized in Table 3.

The chiral phosphoramide-catalyzed Friedel-Crafts reaction of 4,7-dihydroindoles with β , γ -unsaturated α keto esters was found to be general with keto esters bearing different substituents. Several substituted keto esters **3b-g**, containing electron-donating groups at the para- or meta-position of the phenyl ring, have been tested in the reaction with 4,7-dihydroindole 2a. In all cases, moderate to high yields and excellent enantioselectivities could be achieved for the desired alkylation products (59 to 82% yield, 87 to 97% ee, entries 2-7, Table 3). The chemistry went also well with substituted keto esters 3h-l, containing electronwithdrawing groups at the para- or meta-position of the phenyl ring, and the desired alkylation products were obtained in 66 to 85% yield with 91 to 97% ee (entries 8–12, Table 3). When γ-heteroaryl-substituted α-keto esters **3m**, **n** were used, the reaction also gave excellent results, 89% yield with 96% *ee* (2-furyl), and 75% yield with 98% *ee* (2-thienyl), respectively (entries 13 and 14, Table 3). 5-Fluoro-4,7-dihydroindole **2b** has been tested in the reaction with keto ester **3a**, the alkylation product **4ba** was obtained in 84% yield with 96% *ee* (entry 15, Table 3).

Interestingly, when 5-methoxy-4,7-dihydroindole **2c** was tested in the reaction with keto ester **3a**, product **5** was obtained in 53% yield with 94% *ee* due to the hydrolysis of the enol methyl ether (Scheme 1).

To demonstrate the suitability of the current methodology for the synthesis of 2-substituted indole derivatives, the oxidation of the 2-substituted 4,7-dihydroindole derivative has been tested. As shown in Scheme 2, after a quick work-up of the Friedel-Crafts

Scheme 1. Friedel–Crafts reaction of 5-methoxy-4,7-dihydroindole **2c** with keto ester **3a**.

Table 3. Enantioselective Friedel–Crafts reaction of 4,7-dihydroindoles with β , γ -unsaturated α -keto esters. [a]

R¹ O CO₂Et (S)-1 (5 mol%) R¹
$$= F$$
 $= F$ $= F$

Entry	2	3, R ²	Time (h)	4 , Yield [%] ^[b]	ee [%] ^[c]
1	2a	3a , C ₆ H ₅	1.0	4aa , 96	98
2	2a	3b , 4-Me- C_6H_4	12	4ab , 59	87
3	2a	3c , 3 -Me-C ₆ H ₄	2.5	4ac , 82	97
4	2a	3d , 3 -MeO-C ₆ H ₄	1.5	4ad , 80	96
5	2a	3e , 4 -MeO-C ₆ H ₄	1.0	4ae , 75	97
6	2a	3f , piperonyl	1.0	4af , 82	97
7	2a	3g , 2-naphthyl	30	4ag , 74	93
8	2a	3h , $3-NO_2-C_6H_4$	24	4ah , 66	93
9	2a	3i, 4 -Cl-C ₆ H ₄	2.5	4ai , 83	91
10	2a	3j, 4-Br-C ₆ H ₄	1.0	4aj , 85	96
11	2a	3k , 4-F-C ₆ H ₄	3.0	4ak , 80	91
12	2a	31 , 3-Br- C_6H_4	2.0	4al , 85	96
13	2a	3m , 2-furyl	1.0	4am , 89	96
14	2a	3n , 2-thienyl	2.5	4an , 75	98
15	2b	$3a, C_6H_5$	12	4ba , 84	96

[[]a] Reaction conditions: 2.0 equiv. of **2**, 5 mol% **1**, -60 °C, 0.20 mol/L of **3** in ether.

[[]b] Isolated yields.

[[]c] Determined by chiral HPLC analysis.

COMMUNICATIONS Mi Zeng et al.

Scheme 2. Friedel–Crafts reaction of **2a** with keto ester **3a** and *p*-benzoquinone oxidation.

reaction of 4,7-dihydroindole **2a** with keto ester **3a**, the reaction mixture was subjected to 2 equivalents of *p*-benzoquinone in acetonitrile. The desired 2-indolyl compound **6** was obtained smoothly in an overall 59% yield with 98% *ee*, which indicated the perfect retention of the stereochemistry during the oxidation process (entry 1, Table 3).

In summary, we have developed the enantioselective Friedel–Crafts reaction of 4,7-dihydroindoles with β,γ -unsaturated α -keto esters by utilizing chiral *N*-triflyl phosphoramide **1** as an efficient catalyst. The reaction features a metal-free approach, high efficiency of the catalyst, mild reaction conditions, high yields, and excellent enantioselectivities, providing a practical method to synthesize highly enantiopure 2-substituted 4,7-dihydroindole and 2-indole derivatives.

Experimental Section

General Procedure for the Catalytic Asymmetric Friedel-Crafts Reaction

In a dry Schlenk tube, β,γ -unsaturated α -keto ester **3** (0.20 mmol) and *N*-triflyl phosphoramide **1** (8.8 mg, 0.010 mmol) were dissolved in Et₂O (1 mL) under argon. The solution was stirred for 5 min at room temperature and then for another 5 min at $-60\,^{\circ}$ C. Subsequently, *N*-methyl-4,7-dihydroindole **2** (0.40 mmol) was added in one portion at $-60\,^{\circ}$ C. After the reaction was complete (monitored by TLC), saturated aqueous NaHCO₃ (3 mL) was added to quench the reaction. The mixture was allowed to warm to room temperature and was then extracted with CH₂Cl₂. The organic layer was separated and dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure and the residue was purified by flash chromatography (ethyl acetate/petroleum ether = 1/5–1/20) to afford the product.

Supporting Information

2172

Full experimental details with characterization data are available as Supporting information.

Acknowledgements

We thank the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the Science and Technology Commission of Shanghai Municipality (07pj14106, 07JC14063) for generous financial support.

References

- a) J. Bosch, M.-L. Bennasar, Synlett 1995, 587-596;
 b) D. J. Faulkner, Nat. Prod. Rep. 2002, 19, 1-48;
 c) S. Agarwal, S. Caemmerer, S. Filali, W. Froehner, J. Knoell, M. P. Krahl, K. R. Reddy, H.-J. Knoelker Curr. Org. Chem. 2005, 9, 1601-1614;
 d) S. E. O'Connor;
 J. Maresh, Nat. Prod. Rep. 2006, 23, 532-547.
- [2] For reviews: a) Y. Wang, K. Ding, L. Dai, Chemtracts 2001, 14, 610-615; b) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem. 2004, 116, 560-566; Angew. Chem. Int. Ed. 2004, 43, 550-556; c) M. Bandini, A. Melloni, S. Tommasi, A. Umani-Ronchi, Synlett 2005, 1199-1222.
- [3] For reviews: a) G. A. Olah, in: Friedel-Crafts and Related Reactions, Wiley, New York, 1963; b) G. A. Olah, in: Friedel-Crafts Chemistry, Wiley, New York, 1973; c) G. A. Olah, R. Krishnamurti, G. K. S. Prakash, in: Comprehensive Organic Synthesis, Vol. 3, (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, p 293; d) T. B. Poulsen, K. A. Jørgensen, Chem. Rev. 2008, 108, 2903-2915.
- [4] For selected examples: a) N. Gathergood, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2000, 122, 12517-12522; b) J. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172-1173; c) J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030-9031; d) D. A. Evans, K. A. Scheidt, K. R. Fandrick, H. W. Lam, J. Wu, J. Am. Chem. Soc. 2003, 125, 10780-10781; e) Y. Yuan, X. Wang, X. Li, K. Ding, J. Org. Chem. 2004, 69, 146-149; f) S. Shirakawa, R. Berger, J. L. Leighton, J. Am. Chem. Soc. 2005, 127, 2858-2859; g) C. Palomo, M. Oiarbide, B. G. Kardak, J. M. García, A. Linden, J. Am. Chem. Soc. 2005, 127, 4154-4155; h) D. A. Evans, K. R. Fandrick, H.-J. Song, J. Am. Chem. Soc. 2005, 127, 8942-8943; i) Y.-X. Jia, J.-H. Xie, H.-F. Duan, L.-X. Wang, Q.-L. Zhou, Org. Lett. 2006, 8, 1621–1624; j) S.-F. Lu, D.-M. Du, J. Xu, Org. Lett. 2006, 8, 2115-2118; k) H. Li, Y.-Q. Wang, L. Deng, Org. Lett. 2006, 8, 4063-4065; l) J.-L. Zhao, L. Liu, Y. Sui, Y.-L. Liu, D. Wang, Y.-J. Chen, Org. Lett. 2006, 8, 6127-6130; m) W. Zhou, L.-W. Xu, L. Lyi, L. Yang, C.-G. Xia, Eur. J. Org. Chem. 2006, 23, 5225-5227; n) W. Chen, W. Du, L. Yue, R. Li, Y. Wu, L.-S. Ding, Y.-C. Chen, Org. Biomol. Chem. 2007, 5, 816-821; o) G. Bartoli, M. Bosco, A. Carlone, F. Pesciaioli, L. Sambri, P. Melchiorre, Org. Lett. 2007, 9, 1403-1405; p) C.-F. Li, H. Liu, J. Liao, Y.-J. Cao, X.-P. Liu, W.-J. Xiao, Org. Lett. 2007, 9, 1847–1850; q) H. Yang, Y.-T. Hong, S. Kim, Org. Lett. 2007, 9, 2281-2284; r) G. Blay, I. Fernández, J. R. Pedro, C. Vila, Org. Lett. 2007, 9, 2601-2604; s) H.-M. Dong, H.-H. Lu, L.-Q. Lu, C.-B. Chen, W.-J. Xiao, Adv. Synth. Catal. 2007, 349, 1597-1603; t) G.-W. Zhang, L. Wang, J. Nie, J.-A. Ma, Adv. Synth. Catal.

- **2008**, *350*, 1457–1463; u) W.-B. Liu, H. He, L.-X. Dai, S.-L. You, *Org. Lett.* **2008**, *10*, 1815–1818.
- [5] For exceptional examples: a) M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558-10559; b) J. Seayad, A. M. Seayad, B. List, J. Am. Chem. Soc. 2006, 128, 1086-1087; c) I. T. Raheem, P. S. Thiara, E. A. Peterson, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 13404-13405; d) S. Lee, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 15438-15439; e) M. J. Wanner, R. N. S. vander Haas, K. R. deCuba, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. 2007, 119, 7629-7631; Angew. Chem. Int. Ed. 2007, 46, 7485-7487.
- [6] a) H. Çavdar, N. Saraçoğlu, Tetrahedron 2005, 61, 2401–2405; b) H. Çavdar, N. Saraçoğlu, J. Org. Chem. 2006, 71, 7793–7799.
- [7] a) D. A. Evans, K. R. Fandrick, Org. Lett. 2006, 8, 2249–2252; b) D. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt, R. Xu, J. Am. Chem. Soc. 2007, 129, 10029–10041.
- [8] G. Blay, I. Fernández, J. R. Pedro, C. Vila, *Tetrahedron Lett.* 2007, 48, 6731–6734.
- [9] For the Friedel–Crafts reaction of β,γ-unsaturated α-keto esters: a) K. B. Jensen, J. Thorhauge, R. G. Hazell, K. A. Jøgensen, Angew. Chem. 2001, 113, 164–167; Angew. Chem. Int. Ed. 2001, 40, 160–163; b) K. A. Jøgensen, Synthesis 2003, 1117–1125; c) H. L. Van Lingen, W. Zhuang, T. Hansen, F. P. J. T. Rutjes, K. A. Jøgensen, Org. & Biomol. Chem. 2003, 1, 1953–1958;

- d) C. Üenaleroğlu, B. Temelli, A. S. Demir, *Synthesis* **2004**, 2574–2578; e) M. P. A. Lyle, N. D. Draper, P. D. Wilson, *Org. Lett.* **2005**, *7*, 901–904.
- [10] Reviews on chiral phosphoric acid catalysis: a) M. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550–1573; Angew. Chem. Int. Ed. 2006, 45, 1520–1543; b) T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999–1010; c) S. J. Connon, Angew. Chem. 2006, 118, 4013–4016; Angew. Chem. Int. Ed. 2006, 45, 3909–3912; d) T. Akiyama, Chem. Rev. 2007, 107, 5744–5758.
- [11] a) Q. Kang, X.-J. Zheng, S.-L. You, Chem. Eur. J. 2008, 14, 3539-3542; b) Q. Kang, Z.-A. Zhao, S.-L. You, Org. Lett. 2008, 10, 2031-2034; c) Q. Kang, Z.-A. Zhao, S.-L. You, J. Am. Chem. Soc. 2007, 129, 1484-1485; d) Q. Kang, Z.-A. Zhao, S.-L. You, Adv. Synth. Catal. 2007, 349, 1657-1660.
- [12] a) D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626-9627; b) M. Rueping, W. Ieawsuwan, A. P. Antonchick, B. J. Nachtsheim, Angew. Chem. 2007, 119, 2143-2146; Angew. Chem. Int. Ed. 2007, 46, 2097-2100; c) M. Rueping, B. J. Nachtsheim, S. A. Moreth, M. Bolte, Angew. Chem. 2008, 120, 603-606; Angew. Chem. Int. Ed. 2008, 47, 593-596; d) P. Jiao, D. Nakashima, H. Yamamoto, Angew. Chem. 2008, 120, 2445-2447; Angew. Chem. Int. Ed. 2008, 47, 2411-2413; e) D. Enders, A. A. Narine, F. Toulgoat, T. Bisschops, Angew. Chem. 2008, 120, 5744-5748; Angew. Chem. Int. Ed. 2008, 47, 5661-5665.